
Communities of interacting objects; UML

BallWorlds Intro

Work on BallWorlds

� Swing Warmup due now

� But I will allow a grace period until tonight,
11:59 PM. (There are other things to do, so
you’re a bit behind, but it won’t be late if you
submit it by then.)

� Today:
◦ Interacting communities of Objects

Intro to BallWorlds (due Friday, 3/28)

� Tuesday: Finish GUIs

� For a given event type XXXX, a GUI component cccc,
and an XListener object xLisxLisxLisxLis,
◦ the call c.addXListener(xLis); says to the c

object,

◦ "Whenever an event of type X happens, notify
object xLis by calling its appropriate 'X handler'
method."

� So far, each of the programs we have written has involved
at most three new classes that we wrote, plus a handful of
classes from the Java library.

� Many "real" programs involve dozens or hundreds of
classes, with complex interactions among objects from
those classes.

� For large programs can't just start writing code and hope it
works out!

� UML Class Diagrams can help us to visualize the classes
and their interactions before we write the code.

� So far, we have written "from scratch"
programs.

� Most programmers do not get that luxury.
◦ They write a small part of a program that is

designed/written by a larger team.

◦ Their part has to "fit" with the other parts.

◦ They have to understand enough of the other parts
to be able to make their part work.

� In BallWorlds, you will experience that.

� Understand things about a program based on
its UML Class Diagram

� Figure out which parts are relevant to what
you have to do

� Experience the power of inheritance

� DEMO: DEMO: DEMO: DEMO:
◦ Demonstrate the program

◦ How many worlds are there?

/*

* Makes the given number of Worlds, giving each the given frame.

* Rotates between 3 pre-assigned sizes and colors for the Worlds.

*/

private static void makeWorlds(int numberOfWorlds,

BallWorldsFrame frame) {

ArrayList<Dimension> dimensions = new ArrayList<Dimension>();

ArrayList<Color> colors = new ArrayList<Color>();

dimensions.add(BallWorlds.world1Size);

dimensions.add(BallWorlds.world2Size);

dimensions.add(BallWorlds.world3Size);

colors.add(BallWorlds.world1Color);

colors.add(BallWorlds.world2Color);

colors.add(BallWorlds.world3Color);

for (int k = 0; k < numberOfWorlds; ++k) {

new World(dimensions.get(k % 3), colors.get(k % 3), frame);

}

}

� Abstract

� Implements which interfaces?

� What data might be needed for every kind of
Ball?

� Let's do a little bit of code exploration.

� Then write Dud together.

